نویسندگان این یادداشت به بررسی اثر کلروکین و هیدروکسی کلروکین (hydroxychloroquine) بر ویروس سارس-کورونا-۲ در محیط آزمایشگاه و احتمال کم خطرتر بودن هیدروکسی‌کلروکین بر بدن در کنترل عفونت کووید ۱۹ پرداخته ا‌ند. نتایج یافته های این آزمایشها در انتظار تایید آزمایشهای بالینی برای رد یا تایید آنها هستند.

Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro

Jia Liu, Ruiyuan Cao, Mingyue Xu, Xi Wang, Huanyu Zhang, Hengrui Hu, Yufeng Li, Zhihong Hu, Wu Zhong & Manli Wang

Cell Discovery, March 18, 2020

خلاصه: نویسندگان این یادداشت به بررسی اثر کلروکین و هیدروکسی کلروکین (hydroxychloroquine) بر ویروس سارس-کورونا-۲ در محیط آزمایشگاه و احتمال کم خطرتر بودن هیدرکسی‌کلروکین در کنترل عفونت کووید ۱۹ پرداخته ا‌ند. مطالعات گذشته نویسندگان این مقاله نشان داده بود که دو داروی ضد ویروس رمدسیویر (remdesivir) و کلروکین مانع از تکثیر ویروس سارس-کرونا-۲ در محیط آزمایشگاه میشوند. از بین این دو دارو رمدسیویر که به عنوان داروی ضد ویروس ایبولا در مرحله آزمایش قرار گرفته بود، هنوز در مراحل تست نهایی برای تایید و تولید در بازار است، بنابرین امکان دسترسی گسترده به این دارو وجود ندارد. با این حال آزمایشات بالینی برای تایید دارو در حال انجام هستند و گزارش‌های مصرف دارو برای بیماران مبتلا با کووید ۱۹ نتایج مثبتی داشته ا‌ند. داروی دیگری که اغلب به عنوان داروی ضد مالاریا شناخته میشود داروی کلروکین است. این دارو در آزمایشگاه‌ها نتایج مثبتی بر کنترل ویروس سارس-کرونا-۲ داشته است. همچنین، نتایج امیدوار کننده ای بر روی بیماران کووید ۱۹ در مراکز درمانی مشاهده شده است. با این حال، هنوز به صورت قطعی نمی‌توان تائید کرد که کلروکین به عنوانه داروی تائید شده برای کووید ۱۹ میتواند استفاده شود. آزمایش‌های بالینی برای بررسی این موضوع در حال انجام هستند.
در این یادداشت نویسندگان به بررسی یکی از مشتقات کلروکین، هیدرکسی کلروکین، بر روی ویروس سارس-کرونا-۲ در محیط آزمایشگاه پرداخته‌ا‌ند، و به این نتیجه رسیده ا‌ند که هیدروکسی‌کلروکین هم میتواند گزینه قابل بررسی برای آزمایش‌های بالینی به عنوان کاندید درمان برای کووید ۱۹ باشد.

نکته مهم و قابل توجه در این مطالعات این است که این نتایج همگی در محیط آزمایشگاه و خارج از بدن انسان به دست آمده و برای تائید یا تکذیب این یافته ها و معرفی این داروها به عنوان داروی موثر برای کنترل کرونا آزمایش‌های بالینی در حال انجام هستند.


در صورت علاقه مندی به این موضوع میتوانید این مقاله را نیز مطالعه کنید.

مقاله قبلیمقاله بعدی
محقق ارشد
Air Worldwide

تاثیر شرایط جوی بر گسترش بیماری کوید نوزده: تخمین‌ها و پیش‌بینی‌ها

رن شو (دانشگاه کانتیکِت)، هژیر رحمانداد (اِم‌آی‌تی)، ماریچی گوپتا (بیمارستانِ MGH)، کترین دی‌جِنارو (بیمارستانِ MGH)، نوید غفارزادگان (ویرجینا تِک)، حسن امینی (دانشگاه کُپِنهاگ) و محمد جلالی (دانشگاه هاروارد و بیمارستانِ MGH)

تماس: محمد جلالی msjalali@mgh.harvard.edu

خلاصه

مقدمه: تحلیل و پیش‌بینیِ روند گسترش بیماری کوید نوزده، نیاز به تخمینِ میزانِ تاثیر شرایط آب و هوایی بر گسترش بیماری دارد. مطالعات گذشته محققین در این زمینه با تناقضاتی در نتایج همراه بوده‌است. در این مقاله، نویسندگان، ضمنِ جمع‌آوری یکی از گسترده‌ترین مجموعه داده‌های موجود از نقاط مختلف دنیا، به تخمین تاثیر شرایط جوی و پیش بینی ریسک گسترشِ بیماری، در ماه‌های آتی، و در نقاط مختلف دنیا می‌پردازند.

رویکرد: این مقاله مبتنی بر استفاده از روش‌های مختلف تحقیق اعم از مدل‌های آماری و شبیه‌سازی و استفاده از کلان‌داده است. داده‌های جمع‌آوری شده،  شامل تعدادِ بیماران بر مبنای گزارش‌های رسمی در 3739 منطقه دنیا، از تاریخ 12 دسامبر تا 22 آوریل سال 2020، و متغیرهای متعدد جوی و منطقه‌ای است. در این مقاله، ابتدا با استفاده از مدل‌های شبیه‌سازی، چالش‌های پیش‌رو در تخمین تاثیر شرایط آب و هوایی بر گسترش بیماری بررسی شده است و نشان داده می‌شود که، از نظر متدولوژیک، دست‌ِکم گرفتن اهمیتِ توزیع آماریِ بازه زمانی میان آغاز بیماری، شناسایی بیماری، و گزارش آن، می‌تواند به تخمین‌های نادرست بیانجامد. این مشکل از آنجا ناشی می‌شود که برای بررسی تاثیر دما باید دمای روزانه با تعداد مبتلایان همان روز مقایسه شود، حال آنکه زمان نسبتا طولانی و متغیر میان آغاز ابتلا و شناسایی موارد ابتلا وجود دارد. از این رو تخمین تاثیر شرایط آب و هوایی بر بیماری نیز مشکل می‌شود. در این مطالعه، ابتدا الگوریتمی ارائه شده است که زمان آغاز بیماری با استفاده از گزارش‌های رسمی تخمین زده شود. سپس مدلِ آماری این مطالعه، در محیطِ شبیه‌سازی، طراحی و آزمایش شده است. پس از سنجش اعتبارِ مدل، از داده‌های اصلی برای بررسی همبستگی متغیرهای جوی و متغیر بازتولید کننده استفاده شده است. مدل آماری نهایی، علاوه بر متغیرهای جوی، شامل متغیرهای مختلف محیطی، اعم از چگالی شهری، و روند تغییرات در هر منطقه است. نهایتا، از تخمین‌های بدست آمده برای بررسیِ (کاهشِ) ریسکِ ناشی از تغییرات دما بر گسترش بیماری در مناطق مختلف، استفاده شده است.

نتایج: تغییرات آب و هوایی می‌تواند تا حدودی بر (کاهشِ) گسترش بیماری تاثیر‌گذار باشد. میزان تاثیر شرایط جوی قابل ملاحظه است، اما، به خودیِ خود، کافی نیست. به طور مشخص، پس از دمای بیست و پنج درجه سانتیگراد، به ازای هر درجه افزایشِ دما، قدرت بازتولید کنندگی ویروس، تقریبا سه و یک‌دهم درصد کم می‌شود (بازه اطمینان 95 درصد: بین یک و نیم درصد، تا چهار و هشت‌دهم درصد). یعنی ده درجه افزایش دما از 25 تا 35 درجه سانتیگراد، با فرض ثابت بودن سایر عوامل همچون رطوبت هوا، منجر به کاهش سی و یک درصدی عدد بازتولید کننده می‌شود. در مناطق مرطوب‌تر، تاثیر بازدارندگی گرمایش، به مراتب بیشتر خواهد بود. علاوه بر این متغیرها، تاثیر وزش باد، میزان آفتاب، برف و بارندگی نیز بررسی شده است. در کل، به نظر می‌رسد که تفاوت شرایط آب و هوایی، تا 43 درصد، قادر به توضیح تفاوت میزانِ شیوع بیماری در نقاط مختلف دنیاست. شکل 1، تخمین ریسک ناشی از تغییرات جوی بر گسترش بیماری را در برخی از شهرهای ایران نشان می‌دهد.

شکل 1 – ریسک ناشی از تغییرات جویِ گسترش کرونا در شهرهای مختلف ایران – برای درک بهتر شکل باید به تغییرات نسبی هر نمودار توجه شود. مثلا در نمودار تهران، ریسک گسترش بیماری در ماههای تابستان حدودا 30 درصد کمتر از ماههای میانیِ زمستان است (تفاوتِ هفت دهم، و نود و پنج صدم). برای بسیاری دیگر از مناطق ایران و جهان به این سایت مراجعه کنید: https://projects.iq.harvard.edu/covid19

میزان تاثیرات قابل ملاحظه است. هر چند تخمین‌های موجود در این مطالعه با احتیاط همراه بوده و احتمالا تخمین پایین‌دستی است، اما باز هم به نظر نمی‌رسد که تغییرات آب و هواییِ فصلی، به تنهایی، قادر به کنترل بیماری باشد و برای کنترل بیماری به ادامه برخی از سیاستها در سطح کشور نیاز است. برای بررسی بسیاری دیگر از شهرها و مناطق دنیا می توانید به سایت این پژوهش مراجعه کنید. علاقه‌مندان به مباحث تخصصی را به مطلب اصلی ارجاع می‌دهیم.

سایت پژوهش: https://projects.iq.harvard.edu/covid19

مقاله اصلی:

Xu, R., Rahmandad, H., Gupta, M., DiGennaro, C., Ghaffarzadegan, H., Amini, N., Jalali, M., Weather Conditions and COVID-19 Transmission: Estimates and Projections. Available at https://www.medrxiv.org/content/10.1101/2020.05.05.20092627v1  

مقاله علمی: تخمین بیماران کوید19 در شهر نیویورک

تا تاریخ 4 آوریل، تعداد 215 زنِ باردار در نیویورک برای کوید 19 تست شده‌اند. از این میان تنها 4 نفر تب داشته‌اند. به جز آن 4 نفر، نتیجه تست 29 نفر دیگر هم مثبت شده است. این به معنی وجود بیماری در میان حدود 13 درصد این نمونه آماری در شهر نیویورک است. البته کلا فقط 7 نفر از 33 نفر نهایتا علامت واضحی از بیماری بروز داده‌اند. در صورتی که از این نمونه آماری برای تخمین تعداد بیماران در کل شهر نیویورک استفاده شود، به همین نسبت 13 درصد ممکن است فرد بیمار در شهر نیویورک وجود داشته باشد (تا 4 آوریل). این رقم بالای یک میلیون نفر می‌شود و حدودا 10 برابر ارقام رسمی است. البته عده کثیری هیچگاه سیمپتوم نخواهند داشت.

Sutton, D., Fuchs, K., D’Alton, M., & Goffman, D. (2020). Universal Screening for SARS-CoV-2 in Women Admitted for Delivery. New England Journal of Medicine.