The Demand for Inpatient and ICU Beds for COVID-19 in the US: Lessons From Chinese Cities

Ruoran, Li, Caitlin Rivers, Qi Tan, Megan B Murray, Eric Toner, and
Marc Lipsitch (March 2020)

خلاصه:

هدف از این تحقیق بررسی تاثیر پر شدن تخت‌های بیمارستان و علی الخصوص آی سی یو بر سرعت و موفقیت کنترل ویروس کرونا در شهرهای مختلف است. نویسندگان این مقاله دو شهر ووهان و گوانجو را برای تحقیق خود انتخاب کرده ا‌ند. دلیل انتخاب این دو شهر تفاوت قابل توجه تعداد بیماران و تاثیر این تفاوت بر سرعت ارائه خدمات است. شهر ووهان با ۱۹،۴۲۵ بیمار نیازمند به بستری، از تاریخ ۱۰ ژانویه تا پایان فوریه، و شهر گوانجو با کمتر از ۱۰۰ بیمار نیازمند به بستری در این دره مورد مطالعه قرار گرفته ا‌ند. نکات قابل توجه که در نتیجه این تحقیق که میتواند به تصمیم گیرندگان کمک کند شامل موارد زیر است:

۱. تجربه ووهان در گسترش سریع بیماری باعث شد که بیمارستان‌ها ظرفیت پذیرش بیشتر بیمار را نداشته باشند. بنابرین بیماران باید روزها منتظر میماندند تا تخت بیمارستان برای بستری کردن آنها موجود شود. نتیجه این درصد بالای شیوع بیماری در ووهان و کمبود تخت این بود که از زمانی که قرنطینه شهر شروع شد یک ماه طول کشید تا کاهش چشمگیر تعداد مرگ و میر و بیماران مشاهده بشود. یکی از دلیل طولانی شدن این زمان، بازگشت بیماران منتظر به منزل و انتقال بیماری به سایر افراد منزل و حتی اجتماع بود. سرریز بیماران از بیمارستان‌ها و کمبود امکانات همچنین باعث کاهش کیفیت خدمات و افزایش مرگ و میر میشود. (مرگ و میر ۳ درصد در ووهان در مقایسه با ۰.۸ درصد در گوانجو)

۲. تجربه گوانجو متفاوت از ووهان بود. گوانجو با تعداد بسیار کمتری از بیمار در ابتدا روبرو بود و به محض مراجعه بیماران آنها را بستری میکرد و اجازه خروج از بیمارستان تا قبل از پایان درمان کامل را نمیداد. این نوع متفاوت برخورد، باعث شد که تعداد بیماران کرونا در گوانجو به طور قابل توجهی بعد از ۲ هفته از شناسایی اولین بیماران کاهش پیدا کند.

۳. اقدام سریع و آگاهی از تاثیرات تجهیز کردن بیمارستانها و افزایش ظرفیت پذیرش تاثیر بسزایی در توانایی در کنترل بیماری و کاهش تاثیرت مخرب شیوع بیماری در شهرها دارد. کشور‌های و شهرهیی که در حل مشاهده افزایش بیماران هستند

Abstract
Background: Sustained spread of SARS-CoV-2 has happened in major US cities. Capacity needs in Chinese cities could inform the planning of local healthcare resources.
Methods: We described the intensive care unit (ICU) and inpatient bed needs for confirmed COVID-19 patients in two Chinese cities (Wuhan and Guangzhou) from January 10 to February 29, 2020, and compared the timing of disease control measures in relation to the timing of SARS-CoV-2 community spread. We estimated the peak ICU bed needs in US cities if a Wuhan-like outbreak occurs.
Results: In Wuhan, strict disease control measures were implemented six weeks after sustained local transmission of SARS-CoV-2. Between January 10 and February 29, COVID-19 patients accounted for an average of 637 ICU patients and 3,454 serious inpatients on each day. During the epidemic peak, 19,425 patients (24.5 per 10,000 adults) were hospitalized, 9,689 (12.2 per 10,000 adults) were considered to be in serious condition, and 2,087 patients (2.6 per 10,000 adults) needed critical care per day. In Guangzhou, strict disease control measures were implemented within one week of case importation. Between January 24 and February 29, COVID-19 accounted for an average of 9 ICU patients and 20 inpatients on each day. During the epidemic peak, 15 patients were in critical condition, and 38 were classified as serious. If a Wuhan-like outbreak were to happen in a US city, the need for healthcare resources may be higher in cities with a higher prevalence of vulnerable populations.
Conclusion: Even after the lockdown of Wuhan on January 23, the number of seriously ill COVID-19 patients continued to rise, exceeding local hospitalization and ICU capacities for at least a month. Plans are urgently needed to mitigate the effect of COVID-19 outbreaks on the local healthcare system in US cities.

https://dash.harvard.edu/handle/1/42599304

مقاله قبلیمقاله بعدی
محقق ارشد
Air Worldwide

تاثیر شرایط جوی بر گسترش بیماری کوید نوزده: تخمین‌ها و پیش‌بینی‌ها

رن شو (دانشگاه کانتیکِت)، هژیر رحمانداد (اِم‌آی‌تی)، ماریچی گوپتا (بیمارستانِ MGH)، کترین دی‌جِنارو (بیمارستانِ MGH)، نوید غفارزادگان (ویرجینا تِک)، حسن امینی (دانشگاه کُپِنهاگ) و محمد جلالی (دانشگاه هاروارد و بیمارستانِ MGH)

تماس: محمد جلالی msjalali@mgh.harvard.edu

خلاصه

مقدمه: تحلیل و پیش‌بینیِ روند گسترش بیماری کوید نوزده، نیاز به تخمینِ میزانِ تاثیر شرایط آب و هوایی بر گسترش بیماری دارد. مطالعات گذشته محققین در این زمینه با تناقضاتی در نتایج همراه بوده‌است. در این مقاله، نویسندگان، ضمنِ جمع‌آوری یکی از گسترده‌ترین مجموعه داده‌های موجود از نقاط مختلف دنیا، به تخمین تاثیر شرایط جوی و پیش بینی ریسک گسترشِ بیماری، در ماه‌های آتی، و در نقاط مختلف دنیا می‌پردازند.

رویکرد: این مقاله مبتنی بر استفاده از روش‌های مختلف تحقیق اعم از مدل‌های آماری و شبیه‌سازی و استفاده از کلان‌داده است. داده‌های جمع‌آوری شده،  شامل تعدادِ بیماران بر مبنای گزارش‌های رسمی در 3739 منطقه دنیا، از تاریخ 12 دسامبر تا 22 آوریل سال 2020، و متغیرهای متعدد جوی و منطقه‌ای است. در این مقاله، ابتدا با استفاده از مدل‌های شبیه‌سازی، چالش‌های پیش‌رو در تخمین تاثیر شرایط آب و هوایی بر گسترش بیماری بررسی شده است و نشان داده می‌شود که، از نظر متدولوژیک، دست‌ِکم گرفتن اهمیتِ توزیع آماریِ بازه زمانی میان آغاز بیماری، شناسایی بیماری، و گزارش آن، می‌تواند به تخمین‌های نادرست بیانجامد. این مشکل از آنجا ناشی می‌شود که برای بررسی تاثیر دما باید دمای روزانه با تعداد مبتلایان همان روز مقایسه شود، حال آنکه زمان نسبتا طولانی و متغیر میان آغاز ابتلا و شناسایی موارد ابتلا وجود دارد. از این رو تخمین تاثیر شرایط آب و هوایی بر بیماری نیز مشکل می‌شود. در این مطالعه، ابتدا الگوریتمی ارائه شده است که زمان آغاز بیماری با استفاده از گزارش‌های رسمی تخمین زده شود. سپس مدلِ آماری این مطالعه، در محیطِ شبیه‌سازی، طراحی و آزمایش شده است. پس از سنجش اعتبارِ مدل، از داده‌های اصلی برای بررسی همبستگی متغیرهای جوی و متغیر بازتولید کننده استفاده شده است. مدل آماری نهایی، علاوه بر متغیرهای جوی، شامل متغیرهای مختلف محیطی، اعم از چگالی شهری، و روند تغییرات در هر منطقه است. نهایتا، از تخمین‌های بدست آمده برای بررسیِ (کاهشِ) ریسکِ ناشی از تغییرات دما بر گسترش بیماری در مناطق مختلف، استفاده شده است.

نتایج: تغییرات آب و هوایی می‌تواند تا حدودی بر (کاهشِ) گسترش بیماری تاثیر‌گذار باشد. میزان تاثیر شرایط جوی قابل ملاحظه است، اما، به خودیِ خود، کافی نیست. به طور مشخص، پس از دمای بیست و پنج درجه سانتیگراد، به ازای هر درجه افزایشِ دما، قدرت بازتولید کنندگی ویروس، تقریبا سه و یک‌دهم درصد کم می‌شود (بازه اطمینان 95 درصد: بین یک و نیم درصد، تا چهار و هشت‌دهم درصد). یعنی ده درجه افزایش دما از 25 تا 35 درجه سانتیگراد، با فرض ثابت بودن سایر عوامل همچون رطوبت هوا، منجر به کاهش سی و یک درصدی عدد بازتولید کننده می‌شود. در مناطق مرطوب‌تر، تاثیر بازدارندگی گرمایش، به مراتب بیشتر خواهد بود. علاوه بر این متغیرها، تاثیر وزش باد، میزان آفتاب، برف و بارندگی نیز بررسی شده است. در کل، به نظر می‌رسد که تفاوت شرایط آب و هوایی، تا 43 درصد، قادر به توضیح تفاوت میزانِ شیوع بیماری در نقاط مختلف دنیاست. شکل 1، تخمین ریسک ناشی از تغییرات جوی بر گسترش بیماری را در برخی از شهرهای ایران نشان می‌دهد.

شکل 1 – ریسک ناشی از تغییرات جویِ گسترش کرونا در شهرهای مختلف ایران – برای درک بهتر شکل باید به تغییرات نسبی هر نمودار توجه شود. مثلا در نمودار تهران، ریسک گسترش بیماری در ماههای تابستان حدودا 30 درصد کمتر از ماههای میانیِ زمستان است (تفاوتِ هفت دهم، و نود و پنج صدم). برای بسیاری دیگر از مناطق ایران و جهان به این سایت مراجعه کنید: https://projects.iq.harvard.edu/covid19

میزان تاثیرات قابل ملاحظه است. هر چند تخمین‌های موجود در این مطالعه با احتیاط همراه بوده و احتمالا تخمین پایین‌دستی است، اما باز هم به نظر نمی‌رسد که تغییرات آب و هواییِ فصلی، به تنهایی، قادر به کنترل بیماری باشد و برای کنترل بیماری به ادامه برخی از سیاستها در سطح کشور نیاز است. برای بررسی بسیاری دیگر از شهرها و مناطق دنیا می توانید به سایت این پژوهش مراجعه کنید. علاقه‌مندان به مباحث تخصصی را به مطلب اصلی ارجاع می‌دهیم.

سایت پژوهش: https://projects.iq.harvard.edu/covid19

مقاله اصلی:

Xu, R., Rahmandad, H., Gupta, M., DiGennaro, C., Ghaffarzadegan, H., Amini, N., Jalali, M., Weather Conditions and COVID-19 Transmission: Estimates and Projections. Available at https://www.medrxiv.org/content/10.1101/2020.05.05.20092627v1  

مقاله علمی: تخمین بیماران کوید19 در شهر نیویورک

تا تاریخ 4 آوریل، تعداد 215 زنِ باردار در نیویورک برای کوید 19 تست شده‌اند. از این میان تنها 4 نفر تب داشته‌اند. به جز آن 4 نفر، نتیجه تست 29 نفر دیگر هم مثبت شده است. این به معنی وجود بیماری در میان حدود 13 درصد این نمونه آماری در شهر نیویورک است. البته کلا فقط 7 نفر از 33 نفر نهایتا علامت واضحی از بیماری بروز داده‌اند. در صورتی که از این نمونه آماری برای تخمین تعداد بیماران در کل شهر نیویورک استفاده شود، به همین نسبت 13 درصد ممکن است فرد بیمار در شهر نیویورک وجود داشته باشد (تا 4 آوریل). این رقم بالای یک میلیون نفر می‌شود و حدودا 10 برابر ارقام رسمی است. البته عده کثیری هیچگاه سیمپتوم نخواهند داشت.

Sutton, D., Fuchs, K., D’Alton, M., & Goffman, D. (2020). Universal Screening for SARS-CoV-2 in Women Admitted for Delivery. New England Journal of Medicine.