نوید غفارزادگان

تاکنون احتمالا با سیری از مدل‌های ریاضی برای تخمین تعداد بیماران و مرگ و میر ناشی از ویروس کرونا مواجه شده‌اید. هر چند در مورد ایران تعداد مدل‌ها محدود بوده است، اما در مورد سایر کشورها و به خصوص آمریکا انواع مختلفی ارائه شده است. بر اساس مشاهدات، می‌توان مدل‌های موجود تا به این لحظه را در دسته‌بندی‌های زیر قرار داد:

1- روش‌های curve fitting: در این رویکرد، بر اساس نمودارِ از پیش تعیین‌شده‌ای، منحنی خاصی بر روند موجود در داده‌ها منطبق می‌شود، و با استفاده از آن روند آینده بیماری تخمین زده می‌شود. این روش، در صورت انجام مناسب آن، نهایتا برای پیش‌بینی چند روز آینده می‌تواند مفید باشد و در بلند مدت به اشتباه‌های با مقیاس بزرگ منجر می‌شود.

2- مدل‌های ابتداییِ SIR: با توجه به سادگی و در عین حال اعتبارِ این مدل، SIR متداول‌ترین نوع مدل‌سازی است. این مدل‌ها، مبتنی بر تفکیک جمعیتِ در معرض بیماری از افراد بیمار و افراد بهبود یافته (یا متوفی) استوار است و دو فیدبک اصلی را لحاظ می‌کنند: فیدبک مثبتِ افزایش بیماری و فیدبک منفیِ اشباع افراد بیمار. جایگاه SIR در اپیدیمیولوژی مانند جایگاه قوانین نیوتون در فیزیک است: معتبر و عموما خوب برای ارائه یک توصیف ساده. با این حال همانند قوانین نیوتون، باید معادلات بدرستی نوشته شود و پارامترها درست انتخاب شود، که حتی در این حد نیز بسیاری از مدل‌سازهای موجود اشتباه می‌کنند. اما اشتباه اصلی‌تر از آنجا ناشی می‌شود که برخی مدل‌سازان، دینامیک تغییرِ تست را لحاظ نمی‌کنند. (در واقع در مثال فیزیک، مانند این است که داده‌های ارائه شده در مورد حرکت سیاره‌ای که وارد معادلاتمان می‌کنیم، هم با خطای زیاد همراه باشد و هم چند بار تلسکوپ تغییر کرده باشد!) در مورد بیماری اخیر، عموما، رشد ظرفیت تست، مخصوصا در روزهای ابتدایی، از رشد بیماری سریع‌تر بوده است. از این رو، روند ابتدایی رشد داده‌های بیماری که مربوط به رشد تست است، با رشد خودِ بیماری اشتباه گرفته شده است، و در نتیجه R0 تخمین زده شده مقادیری بالاتر از سه و چهار گرفته است.  

3- مدل‌های SIR ساده با در نظر گرفتن فیدبک‌های بیشتر: با توجه به شرایط بیماری و پاسخ‌های اجتماع برخی از پارامترهای موجود در مدل SIR به مرور زمان تغییر می‌کنند. در این گونه مدل ها، چنین پارامترهایی به عنوان تابعی از متغیرهای دیگر مدل تعریف می‌شوند. نمونه‌ای از فیدبک‌ها: گسترش تست، افزایش تقاضا برای تست، پاسخ سیستم بهداشت و درمان و ظرفیت محدود بیمارستان‌ها، کاهش تماس‌های اجتماعی، و … در نظر گرفتن این فیدبک‌ها به دقت مدل کمک می‌کند. هر چند ممکن است داده‌ای در مورد این فیدبک‌ها موجود نباشد، اما چشم‌پوشی از آن‌ها مانند این است که فرض کنیم اثرشان صفر است. صفر لزوما عدد دقیق‌تری از فرضِ مبتنی بر شهود مدل ساز نیست.

4- مدل‌های توسعه یافته SIR با در نظر گرفتن “جزییات” بیشتر (و شاید فیدبک بیشتر): این گونه مدلها تمرکز بیشتری بر تفکیک انواع بیماران می‌کنند. مثلا شدت بیماری و گروه سنی دو نوع متداول تقسیم بندی است. یا می توان SIR را برای جغرافیای مختلف ارائه داد، و بعد حمل و نقل بین مناطق مختلف را در مدل لحاظ کرد. این مدل‌ها می تواند فیدبک‌های بیشتر داشته باشد، یا این که مانند مدل ابتدایی SIR فقط بر دو فیدبک اصلی اکتفا کنند. آیا جزییات بیشتر کمک می کنند؟ در برخی موارد، بلی. مثلا اگر سیاست ایزوله کردن فردی را تست می‌کنید، اگر لحاظ نکنید که برخی از بیماران نشانه‌ای ندارند و در نتیجه از بیماری خود آگاه نیستند که خود را ایزوله کنند، ممکن است اثر ایزوله کردن را زیادتر از مقدار واقعی تخمین بزنید. در برخی موارد نیز دیده می‌شود که مدل‌ساز با اضافه کردن جزییات فقط خطای بیشتری در تاخیرها را وارد مدل کرده است که این امر نه تنها کمک نمی‌کند که می‌تواند به تخمین‌های اشتباه منجر شود.

5- مدل‌های با واحد فرد بیمار و ساختار شبکه‌ای: در این گونه مدل‌ها تمرکز بیشتری بر الگوی جغرافیایی و شبکه‌ای پیشرفت بیماری معطوف می‌شود. این گونه مدل‌ها هم عموما فیدبک شیوع بیماری را دارند. مدل‌های بهتر در این دسته باید بازخور شرایط بر رفتار افراد و تغییرات مربوط به تست را نیز مدنظر قرار دهند. با این حال تعداد این گونه مدل‌ها، در زمان شیوع بیماری، کمتر از سایر مدل ها بوده است که دلیل آن احتمالا به زمان زیاد مورد نیاز برای ساختن، و ارزش افزوده کم آن در مقایسه با مدل‌های ساده‌تر، در شرایطی که بیماری از یک گروه و جغرافیای محدود عبور کرده باشد مربوط می‌شود. معمولا مدل‌های از پیش‌ساخته‌ای موجود است که انتظار می‌رود در این شرایط دوباره کالیبره و استفاده شوند که تا به حال این اتفاق کمتر افتاده است. با اتمام دوره بیماری شاهد مدل‌های جزئی و شبکه‌ای بیشتری خواهیم بود.

در برخی مباحث آنلاین، به تفکیک مدل‌ها بر اساس برچسبِ سیستم داینامیکس و کامپارتمنتال و مدلهای شبکه‌ای پرداخته شده، که به نظر غیردقیق است. از منظر سیستم داینامیکس تمامی موارد دو تا پنج می‌توانند مدل سیستم داینامیکس باشند، اگر لوپِ فیدبک داشته باشند. در واقع قدمت SIR که نوعی مدل سیستم داینامیکس است، از واژه “سیستم داینامیکس” بیشتر است. کامپارتمنتال‌ها تمامی موارد دو تا چهار را شامل می‌شوند. مدل‌های شبکه‌ای می‌توانند به صورت حالت چهار یا پنج باشند، بسته به این که واحد تحلیل چقدر جزئی باشد. در نهایت تمامی این مدل‌ها ممکن است اشتباهات ساختاری داشته باشند (مثلا در تقسیم خروجی از بیماری به بهبود و مرگ بی‌دقت باشند) یا فرض‌های ساده کننده داشته باشند. در حال حاضر با «مدل‌سازی در زمانِ شیوع بیماری» مواجه هستیم و محدودیت زمان در انواع مدل‌ها، رویکردها، و خطای تخمین‌ها تاثیرگذار است.  

مقاله قبلیمقاله بعدی
دانشیار مهندسی صنایع
Virginia Tech

تاثیر شرایط جوی بر گسترش بیماری کوید نوزده: تخمین‌ها و پیش‌بینی‌ها

رن شو (دانشگاه کانتیکِت)، هژیر رحمانداد (اِم‌آی‌تی)، ماریچی گوپتا (بیمارستانِ MGH)، کترین دی‌جِنارو (بیمارستانِ MGH)، نوید غفارزادگان (ویرجینا تِک)، حسن امینی (دانشگاه کُپِنهاگ) و محمد جلالی (دانشگاه هاروارد و بیمارستانِ MGH)

تماس: محمد جلالی msjalali@mgh.harvard.edu

خلاصه

مقدمه: تحلیل و پیش‌بینیِ روند گسترش بیماری کوید نوزده، نیاز به تخمینِ میزانِ تاثیر شرایط آب و هوایی بر گسترش بیماری دارد. مطالعات گذشته محققین در این زمینه با تناقضاتی در نتایج همراه بوده‌است. در این مقاله، نویسندگان، ضمنِ جمع‌آوری یکی از گسترده‌ترین مجموعه داده‌های موجود از نقاط مختلف دنیا، به تخمین تاثیر شرایط جوی و پیش بینی ریسک گسترشِ بیماری، در ماه‌های آتی، و در نقاط مختلف دنیا می‌پردازند.

رویکرد: این مقاله مبتنی بر استفاده از روش‌های مختلف تحقیق اعم از مدل‌های آماری و شبیه‌سازی و استفاده از کلان‌داده است. داده‌های جمع‌آوری شده،  شامل تعدادِ بیماران بر مبنای گزارش‌های رسمی در 3739 منطقه دنیا، از تاریخ 12 دسامبر تا 22 آوریل سال 2020، و متغیرهای متعدد جوی و منطقه‌ای است. در این مقاله، ابتدا با استفاده از مدل‌های شبیه‌سازی، چالش‌های پیش‌رو در تخمین تاثیر شرایط آب و هوایی بر گسترش بیماری بررسی شده است و نشان داده می‌شود که، از نظر متدولوژیک، دست‌ِکم گرفتن اهمیتِ توزیع آماریِ بازه زمانی میان آغاز بیماری، شناسایی بیماری، و گزارش آن، می‌تواند به تخمین‌های نادرست بیانجامد. این مشکل از آنجا ناشی می‌شود که برای بررسی تاثیر دما باید دمای روزانه با تعداد مبتلایان همان روز مقایسه شود، حال آنکه زمان نسبتا طولانی و متغیر میان آغاز ابتلا و شناسایی موارد ابتلا وجود دارد. از این رو تخمین تاثیر شرایط آب و هوایی بر بیماری نیز مشکل می‌شود. در این مطالعه، ابتدا الگوریتمی ارائه شده است که زمان آغاز بیماری با استفاده از گزارش‌های رسمی تخمین زده شود. سپس مدلِ آماری این مطالعه، در محیطِ شبیه‌سازی، طراحی و آزمایش شده است. پس از سنجش اعتبارِ مدل، از داده‌های اصلی برای بررسی همبستگی متغیرهای جوی و متغیر بازتولید کننده استفاده شده است. مدل آماری نهایی، علاوه بر متغیرهای جوی، شامل متغیرهای مختلف محیطی، اعم از چگالی شهری، و روند تغییرات در هر منطقه است. نهایتا، از تخمین‌های بدست آمده برای بررسیِ (کاهشِ) ریسکِ ناشی از تغییرات دما بر گسترش بیماری در مناطق مختلف، استفاده شده است.

نتایج: تغییرات آب و هوایی می‌تواند تا حدودی بر (کاهشِ) گسترش بیماری تاثیر‌گذار باشد. میزان تاثیر شرایط جوی قابل ملاحظه است، اما، به خودیِ خود، کافی نیست. به طور مشخص، پس از دمای بیست و پنج درجه سانتیگراد، به ازای هر درجه افزایشِ دما، قدرت بازتولید کنندگی ویروس، تقریبا سه و یک‌دهم درصد کم می‌شود (بازه اطمینان 95 درصد: بین یک و نیم درصد، تا چهار و هشت‌دهم درصد). یعنی ده درجه افزایش دما از 25 تا 35 درجه سانتیگراد، با فرض ثابت بودن سایر عوامل همچون رطوبت هوا، منجر به کاهش سی و یک درصدی عدد بازتولید کننده می‌شود. در مناطق مرطوب‌تر، تاثیر بازدارندگی گرمایش، به مراتب بیشتر خواهد بود. علاوه بر این متغیرها، تاثیر وزش باد، میزان آفتاب، برف و بارندگی نیز بررسی شده است. در کل، به نظر می‌رسد که تفاوت شرایط آب و هوایی، تا 43 درصد، قادر به توضیح تفاوت میزانِ شیوع بیماری در نقاط مختلف دنیاست. شکل 1، تخمین ریسک ناشی از تغییرات جوی بر گسترش بیماری را در برخی از شهرهای ایران نشان می‌دهد.

شکل 1 – ریسک ناشی از تغییرات جویِ گسترش کرونا در شهرهای مختلف ایران – برای درک بهتر شکل باید به تغییرات نسبی هر نمودار توجه شود. مثلا در نمودار تهران، ریسک گسترش بیماری در ماههای تابستان حدودا 30 درصد کمتر از ماههای میانیِ زمستان است (تفاوتِ هفت دهم، و نود و پنج صدم). برای بسیاری دیگر از مناطق ایران و جهان به این سایت مراجعه کنید: https://projects.iq.harvard.edu/covid19

میزان تاثیرات قابل ملاحظه است. هر چند تخمین‌های موجود در این مطالعه با احتیاط همراه بوده و احتمالا تخمین پایین‌دستی است، اما باز هم به نظر نمی‌رسد که تغییرات آب و هواییِ فصلی، به تنهایی، قادر به کنترل بیماری باشد و برای کنترل بیماری به ادامه برخی از سیاستها در سطح کشور نیاز است. برای بررسی بسیاری دیگر از شهرها و مناطق دنیا می توانید به سایت این پژوهش مراجعه کنید. علاقه‌مندان به مباحث تخصصی را به مطلب اصلی ارجاع می‌دهیم.

سایت پژوهش: https://projects.iq.harvard.edu/covid19

مقاله اصلی:

Xu, R., Rahmandad, H., Gupta, M., DiGennaro, C., Ghaffarzadegan, H., Amini, N., Jalali, M., Weather Conditions and COVID-19 Transmission: Estimates and Projections. Available at https://www.medrxiv.org/content/10.1101/2020.05.05.20092627v1  

اخبار نگران کننده؛ «احتیاط» هنوز اولویت اول

نوید غفارزادگان

در ادامه مطالب قبلی (+و ++) به داده های رسمی جدید بیماری در ایران نگاه می کنیم:

یکی از پارامترهای مهم در بررسی روند شیوع بیماری، متغییر بازتولید کننده Reproduction number است. این متغیر نشان می دهد که هر بیمار در زمان بیماری چند نفر جدید را بیمار می کند. می دانیم که اگر این متغیر بالاتر از یک باشد، روند رشد، فزاینده خواهد بود. دسترسی به داده های واقعی به دلیل محدودیت های تست (اعم از میزان و دقت تست) میسر نیست. از طرف دیگر داده های تست عموما تاخیر ده روزه نسبت به زمان آغاز بیماری دارند. با تمام این محدودیت ها اگر فرض کنیم تعداد گزارشِ بیماران جدید، نسبت ثابتی از بیماران واقعی در ده روز گذشته است می توانیم متغییر بازتولید کننده را تخمین بزنیم. با همین روش به نمودار زیر می رسیم:

این نمودار نشان می دهد که متاسفانه این متغیر، حدودا سیزده روز پیش، عدد یک را پشت سرگذاشته است که روند بسیار نگران کننده ای است. در صورتی که این روند ناشی از نویز در گزارشها نباشد، بیانگر این است که موج دوم بیماری در راه است. امیدواریم این طور نباشد. ضمن این که چون ارقام اعلام شده، کشوری است، دقیقا معلوم نیست چه منطقه ای و چه استانی با این مشکل روبروست. به هر حال سیاستگذاران و مردم باید بسیار به‌هوش باشند، از بازگشایی مراکزی که به تجمع زیاد منجر می‌شود خودداری شود، و از بیرون رفتن های غیرضروری بکاهند.