نوید غفارزادگان

در ادامه مطالب قبلی (+و ++) به داده های رسمی جدید بیماری در ایران نگاه می کنیم:

یکی از پارامترهای مهم در بررسی روند شیوع بیماری، متغییر بازتولید کننده Reproduction number است. این متغیر نشان می دهد که هر بیمار در زمان بیماری چند نفر جدید را بیمار می کند. می دانیم که اگر این متغیر بالاتر از یک باشد، روند رشد، فزاینده خواهد بود. دسترسی به داده های واقعی به دلیل محدودیت های تست (اعم از میزان و دقت تست) میسر نیست. از طرف دیگر داده های تست عموما تاخیر ده روزه نسبت به زمان آغاز بیماری دارند. با تمام این محدودیت ها اگر فرض کنیم تعداد گزارشِ بیماران جدید، نسبت ثابتی از بیماران واقعی در ده روز گذشته است می توانیم متغییر بازتولید کننده را تخمین بزنیم. با همین روش به نمودار زیر می رسیم:

این نمودار نشان می دهد که متاسفانه این متغیر، حدودا سیزده روز پیش، عدد یک را پشت سرگذاشته است که روند بسیار نگران کننده ای است. در صورتی که این روند ناشی از نویز در گزارشها نباشد، بیانگر این است که موج دوم بیماری در راه است. امیدواریم این طور نباشد. ضمن این که چون ارقام اعلام شده، کشوری است، دقیقا معلوم نیست چه منطقه ای و چه استانی با این مشکل روبروست. به هر حال سیاستگذاران و مردم باید بسیار به‌هوش باشند، از بازگشایی مراکزی که به تجمع زیاد منجر می‌شود خودداری شود، و از بیرون رفتن های غیرضروری بکاهند.

مقاله قبلیمقاله بعدی
دانشیار مهندسی صنایع
Virginia Tech

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

تاثیر شرایط جوی بر گسترش بیماری کوید نوزده: تخمین‌ها و پیش‌بینی‌ها

رن شو (دانشگاه کانتیکِت)، هژیر رحمانداد (اِم‌آی‌تی)، ماریچی گوپتا (بیمارستانِ MGH)، کترین دی‌جِنارو (بیمارستانِ MGH)، نوید غفارزادگان (ویرجینا تِک)، حسن امینی (دانشگاه کُپِنهاگ) و محمد جلالی (دانشگاه هاروارد و بیمارستانِ MGH)

تماس: محمد جلالی msjalali@mgh.harvard.edu

خلاصه

مقدمه: تحلیل و پیش‌بینیِ روند گسترش بیماری کوید نوزده، نیاز به تخمینِ میزانِ تاثیر شرایط آب و هوایی بر گسترش بیماری دارد. مطالعات گذشته محققین در این زمینه با تناقضاتی در نتایج همراه بوده‌است. در این مقاله، نویسندگان، ضمنِ جمع‌آوری یکی از گسترده‌ترین مجموعه داده‌های موجود از نقاط مختلف دنیا، به تخمین تاثیر شرایط جوی و پیش بینی ریسک گسترشِ بیماری، در ماه‌های آتی، و در نقاط مختلف دنیا می‌پردازند.

رویکرد: این مقاله مبتنی بر استفاده از روش‌های مختلف تحقیق اعم از مدل‌های آماری و شبیه‌سازی و استفاده از کلان‌داده است. داده‌های جمع‌آوری شده،  شامل تعدادِ بیماران بر مبنای گزارش‌های رسمی در 3739 منطقه دنیا، از تاریخ 12 دسامبر تا 22 آوریل سال 2020، و متغیرهای متعدد جوی و منطقه‌ای است. در این مقاله، ابتدا با استفاده از مدل‌های شبیه‌سازی، چالش‌های پیش‌رو در تخمین تاثیر شرایط آب و هوایی بر گسترش بیماری بررسی شده است و نشان داده می‌شود که، از نظر متدولوژیک، دست‌ِکم گرفتن اهمیتِ توزیع آماریِ بازه زمانی میان آغاز بیماری، شناسایی بیماری، و گزارش آن، می‌تواند به تخمین‌های نادرست بیانجامد. این مشکل از آنجا ناشی می‌شود که برای بررسی تاثیر دما باید دمای روزانه با تعداد مبتلایان همان روز مقایسه شود، حال آنکه زمان نسبتا طولانی و متغیر میان آغاز ابتلا و شناسایی موارد ابتلا وجود دارد. از این رو تخمین تاثیر شرایط آب و هوایی بر بیماری نیز مشکل می‌شود. در این مطالعه، ابتدا الگوریتمی ارائه شده است که زمان آغاز بیماری با استفاده از گزارش‌های رسمی تخمین زده شود. سپس مدلِ آماری این مطالعه، در محیطِ شبیه‌سازی، طراحی و آزمایش شده است. پس از سنجش اعتبارِ مدل، از داده‌های اصلی برای بررسی همبستگی متغیرهای جوی و متغیر بازتولید کننده استفاده شده است. مدل آماری نهایی، علاوه بر متغیرهای جوی، شامل متغیرهای مختلف محیطی، اعم از چگالی شهری، و روند تغییرات در هر منطقه است. نهایتا، از تخمین‌های بدست آمده برای بررسیِ (کاهشِ) ریسکِ ناشی از تغییرات دما بر گسترش بیماری در مناطق مختلف، استفاده شده است.

نتایج: تغییرات آب و هوایی می‌تواند تا حدودی بر (کاهشِ) گسترش بیماری تاثیر‌گذار باشد. میزان تاثیر شرایط جوی قابل ملاحظه است، اما، به خودیِ خود، کافی نیست. به طور مشخص، پس از دمای بیست و پنج درجه سانتیگراد، به ازای هر درجه افزایشِ دما، قدرت بازتولید کنندگی ویروس، تقریبا سه و یک‌دهم درصد کم می‌شود (بازه اطمینان 95 درصد: بین یک و نیم درصد، تا چهار و هشت‌دهم درصد). یعنی ده درجه افزایش دما از 25 تا 35 درجه سانتیگراد، با فرض ثابت بودن سایر عوامل همچون رطوبت هوا، منجر به کاهش سی و یک درصدی عدد بازتولید کننده می‌شود. در مناطق مرطوب‌تر، تاثیر بازدارندگی گرمایش، به مراتب بیشتر خواهد بود. علاوه بر این متغیرها، تاثیر وزش باد، میزان آفتاب، برف و بارندگی نیز بررسی شده است. در کل، به نظر می‌رسد که تفاوت شرایط آب و هوایی، تا 43 درصد، قادر به توضیح تفاوت میزانِ شیوع بیماری در نقاط مختلف دنیاست. شکل 1، تخمین ریسک ناشی از تغییرات جوی بر گسترش بیماری را در برخی از شهرهای ایران نشان می‌دهد.

شکل 1 – ریسک ناشی از تغییرات جویِ گسترش کرونا در شهرهای مختلف ایران – برای درک بهتر شکل باید به تغییرات نسبی هر نمودار توجه شود. مثلا در نمودار تهران، ریسک گسترش بیماری در ماههای تابستان حدودا 30 درصد کمتر از ماههای میانیِ زمستان است (تفاوتِ هفت دهم، و نود و پنج صدم). برای بسیاری دیگر از مناطق ایران و جهان به این سایت مراجعه کنید: https://projects.iq.harvard.edu/covid19

میزان تاثیرات قابل ملاحظه است. هر چند تخمین‌های موجود در این مطالعه با احتیاط همراه بوده و احتمالا تخمین پایین‌دستی است، اما باز هم به نظر نمی‌رسد که تغییرات آب و هواییِ فصلی، به تنهایی، قادر به کنترل بیماری باشد و برای کنترل بیماری به ادامه برخی از سیاستها در سطح کشور نیاز است. برای بررسی بسیاری دیگر از شهرها و مناطق دنیا می توانید به سایت این پژوهش مراجعه کنید. علاقه‌مندان به مباحث تخصصی را به مطلب اصلی ارجاع می‌دهیم.

سایت پژوهش: https://projects.iq.harvard.edu/covid19

مقاله اصلی:

Xu, R., Rahmandad, H., Gupta, M., DiGennaro, C., Ghaffarzadegan, H., Amini, N., Jalali, M., Weather Conditions and COVID-19 Transmission: Estimates and Projections. Available at https://www.medrxiv.org/content/10.1101/2020.05.05.20092627v1  

مقاله علمی: تخمین پخش کووید 19 در سالهای آینده

Kissler, Stephen M., Christine Tedijanto, Edward M. Goldstein, Yonatan H. Grad, and Marc Lipsitch. “Projecting the transmission dynamics of SARS-CoV-2 through the post-pandemic period.”

Science  14 Apr 2020:
eabb5793
DOI: 10.1126/science.abb5793

چکیده: با مقایسه پخش فصلی دو ویروس کرونا دیگر با بیماری کووید 19, در نظر گرفتن سطح مصونیت در جامعه, از بین رفتن مصونیت در طول زمان و ترکیب این اطلاعات با مدلی دینامیکی از پخش بیماری, محققین به نتایج زیر با تمرکز بر شرایط آمریکا دست یافتند:

  • پخش ویروس در هر زمان از سال محتمل است.
  • کووید 19 به طور دایمی با ما خواهد بود, مگر اینکه مصونیت در مقابل آن پس از بیماری بسیار طولانی مدت باشد. در صورت دایمی بودن مصونیت بعد از یک همهگیری بزرگ به مدت 5 سال یا بیشتر از بیماری خبری نخواهد بود.
  • اگر فصلی بودن بیماری به کنترل تابستانی آن در سال اول کمک کند, بازگشت بیماری در پاییز بعد جدیتر خواهد بود چرا که مصونیت کمتری در جمعیت ایجاد شده.
  • اگر سایر ویروسهای کرونا به مصونیت در مقابل کووید 19 کمک کنند, بیماری به طور موقت کاهش میابد, اما پس از چند سال دوباره باز خواهد گشت.
  • برای نگه داشتن پخش بیماری زیر ظرفیت سیستم درمانی (به منظور کاهش مرگ و میر) تا سال 2022 نیاز به فاصله گذاری اجتماعی یا به صورت تناوبی و یا به صورت دایم خواهد بود.

Abstract

It is urgent to understand the future of severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) transmission. We used estimates of seasonality, immunity, and cross-immunity for betacoronaviruses OC43 and HKU1 from time series data from the USA to inform a model of SARS-CoV-2 transmission. We projected that recurrent wintertime outbreaks of SARS-CoV-2 will probably occur after the initial, most severe pandemic wave. Absent other interventions, a key metric for the success of social distancing is whether critical care capacities are exceeded. To avoid this, prolonged or intermittent social distancing may be necessary into 2022. Additional interventions, including expanded critical care capacity and an effective therapeutic, would improve the success of intermittent distancing and hasten the acquisition of herd immunity. Longitudinal serological studies are urgently needed to determine the extent and duration of immunity to SARS-CoV-2. Even in the event of apparent elimination, SARS-CoV-2 surveillance should be maintained since a resurgence in contagion could be possible as late as 2024.